Derivatives of Fluorene. II. 9-Arylimino Compounds¹

MURRAY E. TAYLOR AND T. LLOYD FLETCHER

Received January 17, 1956

Thirty-two new azomethine derivatives of fluorene have been prepared. Several catalysts not used previously for the preparation of azomethines are reported.

Several series of fluorene compounds containing one or two azomethine groups have been prepared. The compounds, related to known carcinogenic derivatives of fluorene, are of potential biological interest. One of them has shown borderline activity in preliminary tests for inhibition of Sarcoma 180 in mice.²

Starting with variously substituted fluorenones and the appropriate arylamines, we have prepared compounds using as catalysts zinc chloride^{3,4} aluminum chloride, acetic acid, phenol, trifluoroacetic acid, or phosphonic acid ion exchange resin.⁵ The choice of the particular catalyst was dictated by the yield and ease of purification of the product.

Each of the catalysts used appeared to have an optimum temperature range. Highest yields were obtained with zinc chloride between $160-190^{\circ}$; with aluminum chloride, between $120-130^{\circ}$ (above 130° , the formation of tars increased). In the case of acetic acid or phenol, best results were obtained at reflux temperatures.

During the course of the preparation of the phenylimino-nitro derivatives, it was found that, when the molar ratio of aniline to nitroketone was less than 2:1, the yield was essentially the same, but the product was difficult to purify. The same effect was found when the ratio of zinc chloride to ketone was greater than 1 g:0.1 mole.

The phenylimino and *p*-fluorophenylimino compounds are all moderately to extremely soluble in chloroform and thus were readily separated from the Lewis acid amine salt. With the exceptions of N-(2-methylaminofluorenylidene)aniline (VIII) and N-(2-trifluoroacetamidofluorenylidene)aniline (X), all crystallized readily from chloroform, absolute ethanol, or carbon tetrachloride. VIII crystallized from chloroform-carbon tetrachloride after standing in the refrigerator for one month. X appeared to decompose slightly on recrystallization.

The bisnitrofluorenylidene compounds phenvlenediamine and benzidine are insoluble in the common organic solvents. In order to purify them, they were extracted with solvents in which unreacted starting materials were soluble. Thus acetic acid and phenol were used in many of these preparations because they served both as solvent and catalyst, and were easily removed from the product. N,N'-Di-(2,7-dinitrofluorenylidene)-pphenylenediamine could be crystallized from onitrotoluene; a red-colored addition compound crystallized out which decomposed at 113-114° to a golden-colored azomethine and o-nitrotoluene. The weight loss corresponded to a ratio of one N,N'-di-(2,7-dinitrofluorenylidene)-p-phenylenediamine to two o-nitrotoluene molecules.

The reaction time appears to affect the yield of product regardless of whether zinc chloride, aluminum chloride, or acetic acid is used. When aluminum chloride and zinc chloride are the catalysts, tar formation increases if the fusion time is much greater than one hour. When glacial acetic acid is used, the product forms quickly, but prolonged reflux splits the imine yielding ketone and acetylated amine. This is illustrated by four preparations of N,N' - diffuorenylidene - p - phenylenediamine. All conditions were kept constant except the reflux time. At 10 minutes, a 70% yield of product was obtained; at 30 minutes, a 60% yield; at 60 minutes, 42%; and at 180 minutes, 1.0%.

The reaction of benzidine with fluorenone in the presence of zinc chloride yielded two products. One was the same as that obtained when glacial acetic acid was the catalyst (XXXII). The other product was a yellow solid, m.p. 117–118° uncorr. The compound reacted with bi-indan-1,3-dione ("bindone")^{6,7} to give a red-purple solution whereas N - fluorenylideneaniline and N,N' - difluorenylidenebenzidine gave no color. The test with "bindone" indicated that a free amine group was present in the molecule. An attempt is being made to identify the compound.

When 2,5-dinitrofluorenone was condensed with either aniline or p-fluoroaniline, two compounds resulted. The reactions yielded a mixture of red and

⁽¹⁾ Part of this work was presented at the American Chemical Society meeting in Chicago in September, 1953. This work was supported in part by a research grant (C-1744) from the National Cancer Institute of the National Institutes of Health, Public Health Service.

⁽²⁾ Private communication from Division of Chemotherapy, Sloan-Kettering Institute.

⁽³⁾ Reddelien, Ber., 43, 2476 (1910).

⁽⁴⁾ Reddelien, Ann., 388, 165, 190 (1912).

⁽⁵⁾ Duolite C-60, a phosphonic acid type resin, generously supplied by the Chemical Process Company, Redwood, California.

⁽⁶⁾ Ionescu, Ber., 60, 1229 (1927).

⁽⁷⁾ Wanag, Ber., 69, 189 (1936).

TABLE I	9-ARYLIMINOFLUORENE DERIVATIVES
---------	---------------------------------

					FL	UORENYLID	FLUORENYLIDENE ANILINE COMPOUNDS	COMPOUNDS							
Com-							Crystal	Crystal-				Analyses	yses	Found	
pound No.	Ketone	Catalyst	t, min.	Ļΰ.	Yield, %	м.р., °С.	Color and Form	lızed from ^t	Formula	С	H H	z	C	HH	z
1	Fluorenone	Zinc chloride	45	183-185	81	88-80 ^h	Deep	Ethanol				-	ļ	ļ	1
II	2-Nitrofluorenone ^{a}	Aluminum	15	125-130	73	$142-143^{i}$	Golden	Chloroform	C19H12N2O2	75.99	4.03	9.33	75.97	4.04	9.32
III	2,7-Dinitro-	chloride Zinc	45	177-183	62	245.5- 245.5-	Orange	Chloroform	$\mathrm{C}_{19}\mathrm{H}_{11}\mathrm{N}_{3}\mathrm{O}_{4}$	66.08	3.21	12.17	66.08	3.20	12.05
IV	10000000 fluorenone" 2,5-Dinitro	chloride Zinc	60	180-183	20	240.0 247.5- 942.0	rous Yellow naadlas	Chloroform	$\mathrm{C}_{13}\mathrm{H}_{11}\mathrm{N}_{3}\mathrm{O}_{4}$	66.08	3.21	12.17	66.25	3.31	12.32
;	fluorenone	chloride	c.	101	53	211-212 211-212 004 005	Red rods	Chloroform Chloroform	C ₁₉ H ₁₁ N ₃ O ₄ CHN.O2		2.58	12.17 14.36	- 58.44	2.52	11.88 14.36
>	2,4,7-1 rinitro- fluorenone ^c	zine chloride	8	061-001	6	077 177	orange nlates		0)						
IΛ	2-Acctamido-	Zinc	45	183-190	66	223-224	Yellow	Chloroform	$\mathrm{C}_{21}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}$	80.75	5.16	8.97	80.62	4.95	9.06
ΛII	fluorenone ^a 2-Benzamido-	chloride Zinc	50	190-195	85	238-239	Yellow	Chloroform	$C_{26}H_{18}N_{2}O$	83.40	4.85	7.48	83.22	4.92	7.61
ΙΠΛ	fluorenone ^e 2-N-Methylamino- fluorenone ^f	chloride Zinc chloride	45	185-190	59	141–142	needles Bright red	Chloroform- carbon	$C_{20}H_{16}N_{2}$	I	l	9.85	1	1	9.55
XI	2-N,N-Dimethyl- aminofinorenne ^f	Zinc chloride	45	165-175	09	129-131	rods Red rods	tetra- chloride Chloroform- carbon	$\mathrm{C_{21}H_{18}N_2}$	8		9.39	-	ł	9.49
X	Triffuoroacet- amidofluorenone ⁷	2	30	185-190	89	195–205 (dec.)	Yellow needles	tetra- chloride Chloroform	$\mathrm{C_{2l}}\mathrm{H_{13}}\mathrm{F_{3}}\mathrm{N_{2}}\mathrm{O}$			7.65	1	I	7.28
					FLUORE	d ANHORNE D	-FLUOROANIL	FLUORENYLIDENE <i>p-</i> FLUOROANILINE COMPOUNDS	70						
IX	Fluorenone	Zinc chloride	60	170–175	87	142-143	Yellow cottony needles	Ethanol	C ₁₉ H ₁₂ FN	83.50	4.43	5.13	83.75	4.30	5.32
ШΧ	2-Nitrofluorenone	Zinc chloride	30	170-175	84	228-229	Golden cottony	Chloroform	C ₁₉ H11FN2O2	1	1	8.80			8.97
NIIX	2,7-Dinitro- fluorenone	Zinc chloride	45	175-180	87	272–273	Drange cottony needles	Chloroform	C ₁₉ H ₁₀ FN ₃ O	1		11.57	Marca 1		11.41
XIX	5	Zinc	60	175-180	55	178-179	Yellow	Chloroform	C19H10FN3O4	1	I	11.57	1	1	11.45
	fluorenone	chloride			26	180-181	needies Red plates	Chloroform	C19H10FN3O4	ļ	I	11.57			11.50

vol. 21

		z	13.65	8.51		8.80	11.73	11.25		4.33	7.30	9.97		4.68	8.11		4.62		6.44	10,41
	Round	H	I			Transie value	1	1		I	4.30	1		ł	4.00		ł		1	ł
	yses	C		1		ł		I		mana	79.91				78.86		1		WWWWW	
	Analyses	Z	13.72	8.48		8.97	11.76	11.38		4.23	7.44	9.97		4.59	8.00		4.59		6.48	10.72
	Color	Cale d H					-	1		1	4.28	ł		1	4.03		l		-	1
		C	1	I		ļ	ļ	I			79.77	1		I	78.84		1			I
		Formula	C ₁₉ H ₉ FN ₄ O ₆	C21H15FN20	NDS	$\mathrm{C}_{21}\mathrm{H_{16}N_{2}O}$	$\mathrm{C_{21}H_{16}N_{3}O_{3}}$	$C_{23}H_{19}N_3O_2$	SC	$C_{25}H_{17}N$	C25H16N2O2	C25H15N3O4	DS	$C_{23}H_{16}N$	C23H14N2O2	DS	C23H15N		$\mathrm{C}_{32}\mathrm{H}_{20}\mathrm{N}_{2}$	$C_{32}H_{1,b}N_4O_4$
pənu	Crystal- lized	from ^t	Chloroform	Acetone	FLUORENYLIDENE <i>p</i> -acetamidoaniline compounds	Chloroform	(Toluene)	Ethanol	FLUORENYLIDENE p -biphenylamine compounds	Ethanol	Benzene	Benzene	eluorenylidene β -naphthylamine compounds	Ethanol	Benzene	α -NAPHTHYLAMINE COMPOUNDS	Ethanol	DIFLUORENTLIDENE p -phenyllenediamine	Chloroform	(Acetic acid and
TABLE 1 Continued	Crystal Color	Color and Form Orange plates Yellow needles		-ACETAMIDOA	Golden	Orange State	Yellow needlcs	p-BIPHENYLA	Yellow needles	$\operatorname{Red}_{\operatorname{plates}}$	Red plates	8- NАРНТНУLА	Yellow needles	Brick- red needles	α-ΝΑΡΗΤΗΥΙΛΑ	Yellow needles	ENE <i>p</i> -PHENI	Red rods	Gold powder	
	M	°C.	232.5- 002 E	205-206	TLIDENE P	250-251	314-315	253–254	NYLIDENE	193.5- 194.0^{j}	210-211	200-201	ATLIDENE	113.5- 115.0 (un-	corr.) 166–167	FLUORENYLIDENE	116–117 (un- corr.)	JUORENYLI	$293-294^{k}$	$_{>400}^{\rm dec.}$
	Vield	, neu, %	87	83	FLUOREN	06	42	89	FLUORE	60-65	50	20	FLUOREI	62	45	FLUORE	45-50	DIFL	70	86
	E	°C,	190-195	175-180		125-135	135 - 140	175-185		190	190	190		190	190		175		Reflux	Reflux
	+	ы, min.	70	45		15	15	45		90	06	90		06	06		90		10	20
		Catalyst	Zine	cnioriae Zinc chloride		Aluminum	Acetic	aciu Zine chloride		Trifluoro- acetic	Trifluoro- acetic	acu Trifluoro- acetic acid		Cation exchange resin	Zine chloride		Zinc chloride		Acetic	Acetic acid
		Ketone	2,4,7-Trinitro-	nuorenone 2-Acetamido- fluorenone		Fluorenone	2-Nitro-	nuorenone 2-Acetamido- fluorenone		Fluorenone	2-Nitrofluorenone	2,5-Dinitro- fluorenone		Fluorenone	2-Nitrofluorenone		Fluorenone		Fluorenone	2-Nitrofluorenone
	Com-	pould.	XV	ΙΛΧ		IIVX	IIIAX	XIX		XX	IXX	IIXX		IIIXX	XXIV		XXV		ΙΛΧΧ	IIAXX

MAY 1956

DERIVATIVES OF FLUORENE. 11

525

N	13.58	ŀ	15.70	9.96	11.88		5.60	9.56	12.20	14.42	8.95	rg. Syn- Taylor of pul- r. ⁿ Re-
Found H	2.76			4.93	4.86		H ere	ł	ł	1]	926). ° 0 Fletcher, 10 mole) al manne
C	62.68	ł	ļ	78.59	82.91		ł		I	ł	I	, 2694 (1) (1928). ^f (2.5 g. (0) 1 the usu
Analyses N	13.72	ł	15.96	10.25	12.11		5.51	9.36	12.21	14.40	9.00	<i>hem. Soc.</i> 26, 263 (tition of 2 ked up ir
Cale'd H	2.63	1	1	4.79	4.79		I		•	I	1	on, J. Cl Chem., 2 3). A solu and wor
Ö	62.75	I		79.10	83.09		ļ	1		I	I	I Thomas J. prakt. ., p. 1022
Formula	$\mathrm{C}_{32}\mathrm{H}_{16}\mathrm{N}_{6}\mathrm{O}_{8}$		$C_{32}H_{14}N_8O_{12}$	$\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{N}_4\mathrm{O}_2$	$\mathrm{C}_{32}\mathrm{H}_{22}\mathrm{N}_4$		$\mathrm{C}_{38}\mathrm{H}_{24}\mathrm{N}_2$	$\mathrm{C}_{38}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}_4$	$\mathrm{C}_{38}\mathrm{H}_{29}\mathrm{N}_{6}\mathrm{O}_{8}$	C ₃₈ H ₁₈ N ₈ O ₁₂	$\mathrm{C}_{42}\mathrm{H}_{30}\mathrm{N}_{4}\mathrm{O}_{2}$). ^b Morgan and and Langecker, so footnote ref. J thy refluxed for 2
Crystal- lized from ¹	(Acetic acid)	o-Nitro- toluene	(Ethanol and actic	acid) Nitro-	benzeue Nitro- benzene	DIFLUORENYLIDENE BENZIDINE COMPOUNDS	Chloroform	(Acetic acid and	(Acetic acid and	eunanoi) (Acetic acid and	etnanoi) Nitro- benzene	34, 1764 (1901 Jine. ^e Eckert (1901) (see als tanol were geni
Crystal Color and Form	Gold	Red plates	text) Purple powder	Yellow	neeutes Brick red powder	ENE BENZIDIN	Brick- red	Orange powder	Purple powder	Mauve powder	Yellow needles	¹ Diels, <i>Ber.</i> , Iride in pyrider., 34 , 1764 d. of 95% eth
M.P., °C.	444-448, dor	$\begin{array}{c} 444-448, \\ \text{dec.} \end{array}$	404-405, dec.	378-380, 100	uec. 304–305, dec.	IGITIX NERO I	350–352, dec.	402-404, dec.	420–422, dec.	390-391	379–380, dec.	hrough ⁹ . ^a cetic anhy of Diels, <i>B</i> and 500 m
Yield, %	95		85	11	69	DIFL	40	62	40	75	66	isted, ^a t ne with a method content),
°C,	Reflux		Reflux	Reflux	190–195		Reflux	Reflux	Reflux	Reflux	Reflux	methods I noftuorenor ion of the (12% H ₂ S
t, min.	10		25	360	15		30	20	30	20	20	d by the of 2-amin Iodificat sulfide
Catalyst	Acetic acid	5	Acetic acid	Phenol	Zinc chloride		Acetic acid	Acetic acid	Acetic acid	Acetic acid	Phenol	s were prepared d Acetylation c 24 (1955). g N of ammonium
Ňetone	2,7-Dinitro- Aucrenone		2,4,7-Trinitro- fluorenone	2-Acetamido-	$\frac{1}{2}$ 2 $ 2$ $ 2$ $ 2$ $ 2$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ 1$ $ -$		Fluorenone	2-Nitrofluorenone	2,7-Dinitro- fluorenone	2,4,7-Trinitro- fluorenone	2-Acetamido- fluorenone	The ketones used as reactants were prepared by the methods listed, ^a through ^e . ^a Diels, Ber., 34 , 1764 (1901). ^b Morgan and Thomason, J. Chem. Soc., 2694 (1926). ^e Org. Syn- theses, Coll. Vol. 3 , 837 (1955). ^a Acctylation of 2-aminofluorenone with acctic anhydride in pyridine. ^e Eckert and Langecker, J. prakt. Chem., 226, 263 (1928). ^f Fletcher, Taylor and Dahl, J. Org. Chem., 20, 1024 (1955). ^a Modification of the method of Diels, Ber., 34 , 1764 (1901) (see also footnote ref. f., p. 1023). A solution of 22.5 g. (0.10 mole) of pul- verized 2-nitrofluorenone, 156 g. of ammonium sulfide (12% H ₂ S content), and 500 ml. of 95% ethanol were gently refluxed for 2.5 hours and worked up in the usual manner. ^h Re-
Com- pound No.	IIIAXX		NIXX	XXX	IXXX		IIXXX	IIIXXX	MXXX	AXXX	ΙΛΧΧΧ	The ketol theses, Coll. and Dahl, J verized 2-mi

VOL. 21

yellow needles that were separated by repeated crystallization from acetone, chloroform, and benzene. In both cases the products gave the correct elemental analysis for nitrogen. Further data concerning these phenomena will be reported in a subsequent publication.

EXPERIMENTAL⁸

The general procedure used for each catalyst is illustrated below.

Aluminum chloride. Preparation of N-(2-nitrofluorenylidene)aniline (II). A mixture of 11.2 g. (0.05 mole) of 2nitrofluorenone, 10 ml. of freshly distilled aniline, and 0.2 g. of aluminum chloride was fused at $125 \pm 5^{\circ}$. A melt formed that bubbled vigorously. The reaction was stopped 15 minutes after bubbling started. The melt crystallized when cool. It then was dissolved in a small amount of hot chloroform and was filtered. The filtrate was concentrated to ca. 30 ml. from which solids crystallized. The first crop was unreacted 2-nitrofluorenone. Successive crops were goldencolored plates which were recrystallized from chloroformcarbon tetrachloride solution, yielding 10.9 g. of product, m.p. 135–141°. Further recrystallization raised the m.p. to $142{-}143^\circ.$

Phenol. Preparation of N,N'-di-(2-acetamidoftuorenylidene)benzidine (XXXVI). A mixture of 11.8 g. (0.05 mole) of 2-acetamidofluorenone, 3.9 g. (0.021 mole) of benzidine, and 9.4 g. (0.10 mole) of phenol was heated to gentle reflux. The reaction was stopped 20 minutes after reflux began. The solids from the reaction were crushed under ether and were collected on the filter. The product then was extracted with 150 ml. of boiling acetone, filtered, and dried, yielding 10.3 g. (79%) of yellow crystals, m.p. 377-378° (dec.). Crystallization from nitrobenzene followed by boiling acetone extraction gave 8.7 g. (66%) of bright yellow crystals, m.p. 379-380° (dec.).

Glacial acetic acid. Preparation of N,N'-difluorenylidenep-phenylenediamine (XXVI). A solution of 11.0 g. (0.061 mole) of fluorenone and 3.0 g. (0.028 mole) of p-phenylenediamine in 25 cc. of glacial acetic acid was refluxed with mechanical stirring for 10 minutes. The reaction mixture was cooled, filtered, washed twice with 50 ml. of glacial acetic acid, and dried, yielding 6.7 g. of product. Evaporation of the filtrate to dryness and extraction with hot ethanol yielded a further 2.2 g., which was combined and crystallized from chloroform yielding 8.5 g. (70%) of red crystals, m.p. 293-294°.

 $Trifluoroacetic acid or cation exchange resin.^{5}$ The molar ratio of catalyst to ketone to amine was 1:10:11.1. The work-up of the product using the appropriate solvent was the same as for the fusion reaction above.

Zinc chloride. The method used was that of Reddelien.3

Acknowledgment. The authors are indebted to Mr. Moses J. Namkung for the preparation of some of the ketones used.

SEATTLE, WASHINGTON

⁽⁸⁾ All melting points below 320° are corrected. Melting points below 300° were taken on a Fisher-Johns block; over 300° , they were taken in a capillary in an aluminum block. Some microanalyses were done by W. Manser, Herrliberg (Zch), Switzerland; some, by the Schwarzkopf Microanalytical Laboratory, Woodside 77, New York, and others, by one of us (M.E.T.).